Establishment and Solution of Airport Taxi Passenger Transport and Revenue Model Based on Grey Correlation Degree

Yang Rui

School of Economics and Management, Northeast Agricultural University Harbin, Heilongjiang, 163000, China

Keywords: analytic hierarchy process, grey correlation, choice decision model

Abstract: With the rapid development of the tourism and transportation industry, urban residents are becoming more and more convenient to travel, and the public's attention to the issue of airport taxi passenger and revenue is also increasing. This article will build a selection decision model, a ride efficiency index model, and taxi mileage revenue model, which studies taxi driver decision-making, airport taxi riding efficiency, and balanced revenue. In the first question, nine indicators are selected based on certain principles as the influencing factors in selecting a decision model; secondly, it is obtained by the analytic hierarchy process. Get the weight to form the column vector ω ; then use the gray correlation analysis method to calculate the correlation degree of each indicator by substituting the weight column vector ω to get the ranking of the degree of influence of each indicator on the decision result. The model solution will be implemented in the second problem. In the second question, the relevant data of different time periods in Shanghai Pudong International Airport were collected and applied to the problem one model. Finally, it was concluded that the best overall benefit for taxi drivers to choose to carry passengers at 18:00 that day.

1. Introduction

With the continuous development of China's economy, the level of residents' consumption has gradually increased, and more and more people choose to travel by air [1]. The roadside taxi transport system at the hub airport is one of the important transportation links between the airport and the city. Whether the operation is smooth, the planning is reasonable, and the public experience all reflect the level of public transportation management in a city [2]. However, there are often passenger queues and taxis in the airport to carry passengers, which makes taxi drivers how to choose between queuing to carry passengers and returning to the city, and how to manage taxis at the airport. Reasonable passenger loading and taxi queuing have become a major problem for the airport.

2. Model Establishment And Solution

2.1 The First Question

2.1.1 Establishment of model one

(1) Sub-question one

For sub-problem one: Analyze and study the influencing mechanism of factors related to taxi driver decision-making. In this paper, we will use the gray correlation analysis method to calculate the gray correlation between various indicators, so as to obtain the degree of influence of each indicator on taxi driver decision-making. The comparison between them, thus explaining the mechanism of action between the various influencing factors. In order to simplify the calculation, this article chooses to calculate by spss 24.0 software. According to the gray system theory, if $x = \{x_0, x_1, x_2, ..., x_m\}$ is the gray correlation factor set, where x_0 is the reference data sequence, x_i (i = 1,2,...., m) is the comparison data series, x_0 (k) and x_i (k) are x_0 with x_i K-th data point. That is:

$$x_{0} = (x_{0}(1), x_{0}(2), \dots, x_{0}(n))$$

$$x_{1} = (x_{1}(1), x_{1}(2), \dots, x_{1}(n))$$

$$x_{2} = (x_{2}(1), x_{2}(2), \dots, x_{2}(n))$$
.....
$$x_{m} = (x_{m}(1), x_{m}(2), \dots, x_{m}(n))$$
Otherwise:
$$\Delta_{0i}(k) = |x_{0}(k) - x_{i}(k)|$$

$$\Delta_{min} = \min_{i} \min_{k} \Delta_{0i}(k)$$

 $\Delta_{max} = \max_{i} \max_{k} \Delta_{0i}(k)$

$$r(x_0(k), x_i(k)) = \frac{\Delta_{min} + \rho \Delta_{max}}{\Delta_{0i}(k) + \rho \Delta_{max}}$$
$$r(x_0, x_i) = \sum_{k=1}^n \omega_k r(x_0(k), x_i(k))$$

In general, if $r(x_0, x_i) > r(x_0, x_j)$, then x_0 versus x_i relevance ratio x_0 versus x_j is more relevant, in other words x_i correct x_0 degree of influence x_i bigger.

(2) Sub-question two

Aiming at sub-problem two: comprehensively considering the changing rules of the number of passengers at the airport and the benefits of taxi drivers, a taxi driver selection decision model is established. First, the corresponding indicators need to be selected as influencing factors, both as application indicators of sub-problem one and at the same time in sub-problem two the weight setting is carried out in this paper. AHP analytic hierarchy process is used to determine the weight of each influencing factor, the weight matrix is constructed, and the weight calculation is performed by spss 24.0 software to obtain the weight value of the corresponding index. Finally, the choice of airport taxi driver is constructed. The decision index model is used as the basis for the driver's decision.

1) Index selection principle

The selection of indicators for selecting a decision model should meet the following principles:

a. Objectivity principle: The selected indicators should be able to objectively reflect the status of tuition fees in colleges and universities.

b. Quantifiable principle: The selected indicators should be quantifiable for quantitative analysis.

c. One-time principle: The selected indicators should be data that can be directly represented in the data without secondary calculation.

d. Principle of openness: The selected indicators should be publicly available in the literature, so that they can be collected and used for research.

2) Index selection results

According to the requirements of the topic, comprehensively considering the changing rules of the number of passengers at the airport and the income of taxi drivers, this article has carried out a hierarchical analysis on the selected indicators, and a total of 3 first-level indicators: the pool factor X_1 passenger factor X_2 operating factor X_3 9 secondary indicators: average number of taxis released

 x_1 average effective berth x_2 average waiting time x_3 flights x_4 nnumber of passengers x_5 average passenger per vehicle x_6 , mileage x_7 , fare x_8 , time cost x_9 the hierarchical relationship is shown in Table1.

a. ahp hierarchy analysis

First, a weight matrix must be constructed between all the first-level indicators and between the first-level and second-level indicators, and then substituted into the spss 24.0 software to perform the AHP hierarchy analysis to obtain the weight of each indicator.

b. Choosing a decision model index score

From the results of the above indicator weight analysis, the weight value of each of the 9 secondary indicators can be calculated ω_k (k = 1, 2,..... 9). The weights obtained can not only be substituted into the sub-problem one to calculate the grey correlation between the indicators, but also can be used as the weight vector of this problem for the establishment of the taxi driver selection decision model Here you get the combined weight vector:

 $\boldsymbol{\omega} = (\omega_1 \quad \omega_2 \quad \omega_3 \quad \omega_4 \quad \omega_5 \quad \omega_6 \quad \omega_7 \quad \omega_8 \quad \omega_9)^T$

After getting relevant data, a decision matrix will be formed:

Record total score $Y = \omega X = \sum_{k=1}^{9} \sum_{i=1}^{n} \omega_k x_{ki}$ Calculate the score of each group of programs. The group with the highest total score is the best choice for decision making. The total score obtained Φ That is, the score index for the taxi driver selection decision model constructed can be used as the basis for driver selection decisions.

		Number of taxis released x_1				
		Effective berth x_2				
	Car pool factor X_1	Average waiting time x_3				
		Flights x_4				
		Number of passengers x_5				
	Passenger factor X_2	Average number of passengers per vehicle x_6				
		mileage x_7				
Choice Decision Model x		fare x_8				
	Operational factor X_3	time cost x_9				

Table 1. Hierarchical relationship of each indicator

2.2 Second Question

2.2.1 Data collection and preprocessing

Table 2. Relevant index data of Shanghai Pudong International Airport in each time period

time	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉
15:00	355	1.31	10.39	36	3309	7.4	53	186	60
16:00	571	1.07	12.95	36	3417	6.9	47.9	168	55
17:00	708	1.03	16.71	27	2077	5.1	52.8	186	65
18:00	575	1.37	14.27	33	3948	7.3	53.9	192	72
19:00	487	2.01	13.82	26	1831	8.2	56.3	201	80
20:00	534	1.73	11.05	37	4595	10.7	53.6	189	72
21:00	415	1.53	9.21	36	4680	11.3	47.9	169	62
22:00	737	1.05	7.47	32	2077	8.6	41.6	146	55

23:00	761	1.02	8.29	26	1745	6.5	40.9	143	50	
Taking Shanghai Pudong International Airport as the object, data at different time periods in a										
day were ra	ndomly	selected f	or collection	and	preprocessii	ng. The s	tatistical i	ndicators	s were	
selected 9 se	condary	indicators:	the average	numb	er of taxis	released x_1	average ef	ffective b	berth x_2	
average wait	average waiting time x_3 flights x_4 nnumber of passengers x_5 average passenger per vehicle x_6 ,									
mileage x_7 , f	are x_8 , ti	me $\cot x_9$. Specific in	dicator	values suc	h astable.	As there	is no tax	i flow	
from Pudong	Airport	from 3am	to 4 am on th	ne same	e day, the d	ata in the a	above two	time per	iods in	
the original d	ata are de	eleted as in	valid data, ar	nd the f	following da	ata are vali	d data afte	r screeni	ng.	

2.2.2 Correlation between indicators

(1) Solution of grey correlation

First, the data sequence matrix A is dimensionless. In order to reduce the calculation, this paper uses the database intrinsic function B = zscore (A) in MATLAB 2017a software to directly obtain the dimensionless matrix B. FigureShown:

Z	变量 - A											🖲 🗙
	A × B	×										
H	22x9 double											
	1	2	3	4	5	6	7	8	9	10	11	12
1	421	3.1300	21.2300	22	2361	5.6000	38.2000	133	45			^
2	224	4.2100	39.7300	8	683	3.9000	34.1000	117	40			
3	149	4.1700	43.6900	11	428	2.8000	36.9000	127	43			
4	39	6.2300	26.4300	12	537	3.1000	30.1000	103	35			
5	29	3.6200	15.2100	8	571	4.9000	31.5000	108	40			
6	212	2.5400	14.3700	14	693	6.9000	36.9000	129	45			
7	111	2.0900	12.1800	17	1071	7.8000	31.2000	106	33			
8	235	2.0800	9.4900	32	1374	9.6000	44.6000	158	55			
9	167	2.0100	8.2100	48	1429	9.5000	41	143	50			
10	275	1.7300	11.2900	28	1207	8.4000	43.2000	150	50			
11	462	1.1200	10.8300	27	1337	8.6000	46.1000	161	50			
12	345	1.2300	8.7100	36	2305	9.2000	50.5000	178	65			
13	416	2.0200	8.9300	29	3011	8.4000	52.1000	185	70			
14	355	1.3100	10.3900	36	3309	7.4000	53	186	60			
15	571	1.0700	12.9500	36	3417	6.9000	47.9000	168	55			
16	700	1 0200	16 7100	77	2022	5 1000	52 0000	106	65			, v
άp.	令行窗口											()
	>> B=zscor	e (A)										^
	B =											
	0.0157	0.7000	0.0010	0.4004	0.0500	0.7070	0.0005	0.0751 0	21.40			
	0.2157	1.5151	0.0212	-0.4084	0.2030	-0.1319 -	-0.0800 -	1 2002 1	1040			
	-1.0226	1,0101	2.0260	-1.7003	-1.0300	-1.4/30 -	-1.1004 -	1.2000 -1	9705			
	-1.0320	2 0242	1 1572	-1.92/9	-1.2329	-1 9201 -	-1 6740 -	1 6609 -1	4022			
	-1 5822	1 0712	0.0007	-1 7053	-1 1229	-1 0409 -	-1 5033 -	1 4965 -1	1040			
fx	-0 7435	0 2591	-0.0858	-1 1495	-1 0291	-0 1751 -	-0 8450 -	0 8065 -0	7148			~

Figure 1. Matlab dimensionless processing

Then substitute the dimensionless matrix into the correlation coefficient:

$$r(x_0(k), x_i(k)) = \frac{\Delta_{\min} + \rho \Delta_{\max}}{\Delta_{0i}(k) + \rho \Delta_{\max}} (\rho = 0.5)$$

The correlation coefficient matrix with the time series as the reference sequence is obtained, and the obtained gray correlation coefficient matrix is substituted into the correlation degree formula to obtain the correlation degree of each index. As table shown:

	Relevance results	
Evaluation item	Correlation	Ranking
x_1	0.730	1
<i>x</i> ₂	0.531	9
<i>x</i> ₃	0.582	5
<i>x</i> ₄	0.582	5
<i>x</i> ₅	0.580	7
<i>x</i> ₆	0.580	7
x ₇	0.589	4
<i>x</i> ₈	0.701	2
<i>x</i> ₉	0.687	3

Table 3. Gray correlation results

(2) Conclusion of relevance

By observing the above correlations, we can know the degree of influence of various indicators on the taxi driver's decision-making scheme. Among the nine selected indicators, the most significant influence on the taxi driver's decision-making is the average number of taxis released. x_1 Followed by taxi fare x_8 , the degree of correlation is higher than 0.7, which shows that the degree of influence is very large. x_9 , mileage x_7 average waiting time x_3 flights x_4 Number of passengers x_5 and average passengers per vehicle x_6 the correlation degree of these six items is between 0.58 and 0.59, which shows that the impact is greater. The last ranking of the correlation degree is the average effective berth. x_2 The correlation degree is only 0.531, which has the least impact on driver decisions.

2.2.3 Selection decision model solving

(1) Index value of decision model

According to the principle of the AHP analytic hierarchy model, it is necessary to calculate the product of the decision matrix and the weight vector to obtain the total score value of each scheme and compare it to the maximum value. The decision matrix is the data matrix obtained through the dimensionless processing above,

$$Y = \omega X = \sum_{k=1}^{9} \sum_{i=1}^{22} \omega_k x_{ki}, \text{ count score matrix}$$

This article defines the same scheme as different time periods within a day, and because the invalid data from 3 am to 4 am is deleted from the original data, 22 schemes can be finally obtained, so n = 22, each scheme represents the time In order to reduce the amount of calculation, MATLAB 2017a software is used again to combine the weights of problem one to generate a weight matrix $Z = \omega = (\omega_1 \ \omega_2 \ \omega_3 \ \omega_4 \ \omega_5 \ \omega_6 \ \omega_7 \ \omega_8 \ \omega_9)^T$, as shown in Figure 2:

俞	令行窗口											۲
	-0.	6379	-0.0868	-0.5888	0.5179	-0.5054	0.9937	0.0936	0.1464	0.0637		^
	-0.	9500	-0.1395	-0.7207	2.0000	-0.4631	0.9504	-0.3452	-0.3465	-0.3255		
	-0.	4543	-0.3500	-0.4033	0.1474	-0.6338	0.4742	-0.0770	-0.1165	-0.3255		
	0.	4039	-0.8088	-0.4507	0.0547	-0.5339	0.5608	0.2765	0.2449	-0.3255		
	-0.	1331	-0.7261	-0.6692	0.8884	0.2106	0.8205	0.8129	0.8035	0.8422		
	0.	1928	-0.1320	-0.6465	0.2400	0.7535	0.4742	1.0079	1.0335	1.2314		
	-0.	0872	-0.6659	-0.4960	0.8884	0.9827	0.0413	1.1176	1.0664	0.4529		
	0.	9041	-0.8464	-0.2322	0.8884	1.0657	-0.1751	0.4959	0.4749	0.0637		
	1.	5329	-0.8765	0.1554	0.0547	0.0352	-0.9543	1.0933	1.0664	0.8422		
	0.	9225	-0.6208	-0.0961	0.6105	1.4741	-0.0020	1.2274	1.2635	1.3871		
	0.	5186	-0.1395	-0.1425	-0.0379	-0.1539	0.3876	1.5199	1.5592	2.0099		
	0.	7343	-0.3500	-0.4280	0.9811	1.9717	1.4698	1.1908	1.1649	1.3871		
	0.	1882	-0.5005	-0.6177	0.8884	2.0370	1.7295	0.4959	0.5078	0.6086		
	1.	6659	-0.8614	-0.7970	0.5179	0.0352	0.5608	-0.2721	-0.2479	0.0637		
	1.	7761	-0.8840	-0.7125	-0.0379	-0.2201	-0.3483	-0.3574	-0.3465	-0.3255		
	>> Z=[Z =	0.0224	4853562;0.	0408108254	;0.0739938	184;0.0478	980000;0.0	478980000;	0.14369400	00;0.06616	10352:0.1623488100:0.3947163870	0]
	0.	0225										
	0.	0408										
	0.	0740										
	0.	0479										
	0.	0479										
	0.	1437										
	0.	0662										
	0.	1623										
	0.	3947										
fx	>>											~
	<											>

Figure 2. Matlab weight matrix input

Then multiply the weight matrix z by the dimensionless matrix b: $Y_{22\times 1} = B_{22\times 9} \times Z_{9\times 1}$, That is, a column vector composed of the respective index score values of the 22 schemes, as shown in Figure 3:

命令行豐口	۲
0.1623	^
0.3947	
>> Y*B*Z	
Y -	
-0.4711	
-0.8189	
-0.6941	
-1.1754	
-1.0550	
-0.6110	
-1.1061	
0.1370	
-0.0778	
-0.1620	
-0.0701	
0.6050	
0.7874	
0.4556	
0.1721	
0.4552	
0.9217	
1.1890	
1,1386	
0.6822	
0.0173	
-0.3197	
$f_X >>$	
4	>

Figure 3. Matlab matrix multiplication

Then we got the index score column vector of 22 schemes, and got the index score of each scheme:

$$\begin{split} Y_1 &= -0.4711 \ Y_2 = -0.8189 \ Y_3 = -0.6941 \ Y_4 = -1.1754 \ Y_5 = -1.0550 \ Y_6 = -0.6110 \\ Y_7 &= -1.1061 \ Y_8 = 0.1370 \ Y_9 = -0.07a78 \ Y_{10} = -0.1620 \ Y_{11} = -0.0701 \ Y_{12} = 0.6050 \\ Y_{13} &= 0.7874 \ Y_{14} = 0.4556 \ Y_{15} = 0.1721 \ Y_{16} = 0.4552 \ Y_{17} = 0.9217 \ Y_{18} = 1.1890 \\ Y_{19} &= 1.1386 \ Y_{20} = 0.6822 \ Y_{21} = 0.0173 \ Y_{22} = -0.3197 \end{split}$$

3. Conclusion

According to the score value obtained by MATLAB 2017a software, the optimal scheme can be obtained by comparing the score values of 22 schemes. The definition scheme is a_n (n = 1, 2,...., 22), the best solution is a*, which can be obtained from the above results:

 $Y(a^*) = \max_{1 \le n \le 22} Y(a_n) = Y(a_{18}) = 1.1890$

The best plan obtained from this is the 18th data series plan, that is, the taxi driver chooses to leave the bus at 18:00 on the same day for the best overall benefit.

References

[1] He Sha, Gou Wei, Hu Yan, Zhao Qiyue, Luo Jiqing, Wang Shiqiang, Wang Xiaomei. Research on risk evaluation method of shale gas gathering and transportation pipeline based on analytic hierarchy process [J]. Science & Technology Innovation and Application, 2019, 12 (14): 1 - 3.

[2] Han Zhonghe, Qi Chao. Analysis of influencing factors of energy consumption intensity based on grey correlation [J]. Industrial Technology & Economy, 2016, 35 (10): 155 - 160.

[3] Li Jing, Yang Zifan, Zhang Ke, Zhai Jiaqi. Analysis on the operating index system and characteristics of electric taxis in Beijing [J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2014, 10(01): 283 - 287.